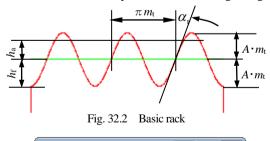


[32] Sin curved tooth profile gear design system

Fig. 32.1 Sin curved tooth profile gear design system

32.1 Abstract

Gears that use a sine-tooth profile as a reference rack "Sine-gear" have a smaller sliding ratio than involute gears, so their power loss is smaller. Therefore, it can be considered that the amount of frictional heat generation at the time of engagement decreases and the temperature rise of the teeth can be suppressed. From this, it can be expected that the decrease in allowable bending stress of plastic material with temperature rise also decreases and the load capacity of plastic gears also increases.


In addition, the meshing of the sinusoidal gear has a smaller relative curvature at the meshing point and a larger tooth thickness at the dangerous cross section than involute gear. Therefore, it is expected that this will bring about a decrease in the contact stress on the tooth surface and the bending stress on the base, which will be advantageous for increasing the load capacity.

32.2 Gear type and tooth profile

- (1) Gear type: External gear pair, internal gear pair
- (2) Tooth profile: Sine-tooth profile (Basic rack)

32.3 Basic rack

The "Sine-Gear" reference rack is shown in Figure 32.2, and the gear pair selection and reference rack gear setting are shown in F igure 32.3. "Sine-Gear" is easy to HOB and form grinding.

M Property		
Gear type		
External × External	nal 🔿 Ex	ternal×Internal
🔲 Input profile shift co	pefficient	
Item	Symbol	Value
Tooth depth factor	hao,hfo	1.0000
Tip clearance factor	cko	0.2500
<mark>ОК</mark>	Cano	el

Fig. 32.3 Selection of gear pair and Basic rack

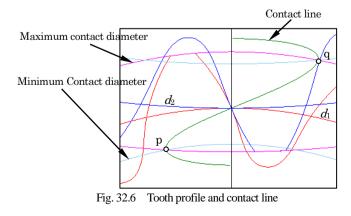
32.4 Gear specification

Figure 32.4 shows the input screen of gear specifications. In addition, the sum of the tooth shift coefficients of the Sine-gear must always be Zero.

Item	Symbol	Unit	Pinion	Gear	
Transverse module	mt	mm	1.0000		
Number of teeth	z		15	40	
Helix angle	β	deg	20 * 0 *	0.00 "	
Helix direction			Right hand $$	Left hand	
Reference diameter	d	mm	15.0000 40.00		
Addendum/Dedendum	hathf	mm	1.2000		
Profile shift coefficient	×t		0.1200	-0.1200	
Tip clearance	cka		0.2500	0.2500	
Tip diameter	da	mm	17.1400	41.6600	
Root diameter	df	mm	12.8400	37.3600	
Circular tooth thinning for backlash	fr	mm	0.0500	0.0500	
Tip R	Ra	mm	0.0000	0.0000	
Face width	Ь	mm	8.0000	8.0000	
	OK	Cancel		Clear	

Fig. 32.4 Gear specification

32.5 Gear dimensions


Calculation results of gear dimensions, contact ratio, and sliding ratio are shown in Fig. 32.5. Non-involute gears like "Sine-gear" mesh correctly only at the theoretical center distance, but with this software you can intentionally change the center distance to check the tooth meshing.

Result of dimension				
Item	Symbol	Unit	Pinion	Gear
Normal module	mn	mm	0.9	397
Pressure angle	α	deg	22.6	1986
Profile shift	×m	mm	0.1200	-0.1200
Transverse circular tooth thickness	St	mm	1.6209	1.4206
Effective max diameter	dh	mm	17.1400	41.6600
Effective min diameter	dt	mm	12.8400	37.3600
Addendum	ha	mm	1.0700	0.8300
Dedendum	hf	mm	1.0800	1.3200
Lead	pz	mm	129.4718	345.2582
Backlash	jn	mm	0.1000	
Transverse contact ratio	εα		1.1686	
Overlap ratio	εβ		0.9268	
Total contact ratio	εγ		2.0955	
Sliding ratio(max)	σa		0.4733	0.4583
Sliding ratio(min)	σf		-0.8459	-0.8987
Theoretical center distance	a	mm	27.5000	
Item	Symbol	Unit	Pinion	Gear
Design center distance	aJ	mm	27.5	000
Ball diameter	dp	mm	1.8813	1.8813
Over ball distance	dm	mm	18.0525	42.8459
Tooth face interference			doesn't	occur

Fig. 32.5 Gear dimensions

32.6 Tooth profile

The mesh of "Sine-gear" is shown in Fig. 32.6. In the case of involute gears, the contact line is a straight line, but the working line of "Sine-gear" is an S-shaped line. Therefore, the meshing range is from the meshing start point "p" to the meshing end point "q".

In the case of involute gears, the meshing ratio increases as the number of teeth on the other gear increases, but the meshing ratio of "Sine-gear" does not increase significantly. A contact line (not straight line) can be seen at the center of the tooth surface in the tooth profile rendering in Figure 32.7. The tooth thickness of this gear can be measured with the over ball size as shown in Fig. 32.8.

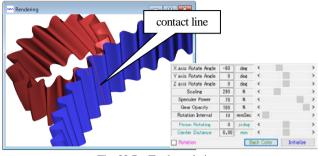


Fig. 32.7 Teeth rendering

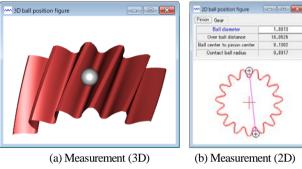


Fig. 32.8 Over-ball measurement (example of pinion)

32.7 Sliding ratio

Fig. 32.9 shows the sliding ratio of "Sine-gear", and Fig. 32.10 shows the sliding ratio of the involute gear superimposed on the sliding ratio of "Sine-gear". However, the specifications of involute gear are the same as "Sine-gear".

The graph in Fig. 32.10 shows that the sliding area of "Sine-gear (pinion)" is 1 / 3.5 smaller than that of involute, and that of "Sine-gear (gear)" is 1 / 1.90.

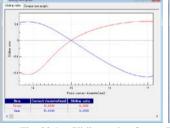


Fig. 32.9 Sliding ratio of "Sine-gear" Fig. 32.10

Fig. 3.10Sliding speed of involute gear and "Sine-gear"

Table 32.1 Maximum sliding ratio and sliding area

	Maximum sliding ratio	Sliding area (mm ²)
Sine-gear (P)	-0.791	10.3
Sine-gear (G)	0.438	11.3
involute gear (P)	-2.89	21.2
involute gear (G)	0.743	17.9

32.8 Change in contact ratio

When changing the number of gear teeth to 18, 25, 30, 50, 100 by fixing the number of teeth of the pinion to 18 with the involute gear and "Sine-gear" both set to $m_n=1$, $\beta=0^\circ$ As a result, involute gears have an increase in contact ratio as the number of gear teeth increases, but "Sine-gear" hardly changes.

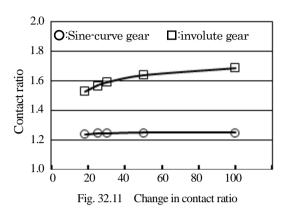


Table 32.2 Combination of teeth numbers and contact ratio

<i>Z</i> 1	Z2	а	$\mathcal{E}_{\alpha(\text{Involute})}$	$\mathcal{E}_{\alpha(\text{Sine})}$
18	18	18.000	1.5298	1.2422
18	25	21.500	1.5707	1.2473
18	30	24.000	1.5916	1.2487
18	50	34.000	1.6422	1.2498
18	100	59.000	1.6911	1.2498

32.9 Transmission error

The transmission error analysis setup is shown in Fig. 32.12 and the transmission error analysis and the analysis result of wow and flutter are shown in Fig. 32.13 and Fig. 32.14.

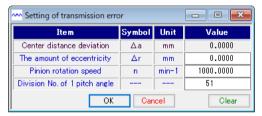
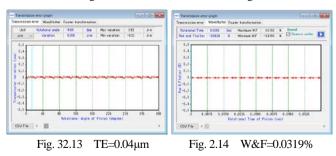
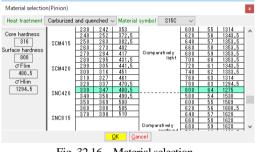



Fig. 32.12 Transmission error setting


32.10 Gear strength calculation

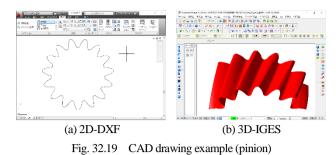
Set the torque and material in Figure 32.15 to calculate the bending strength and pitting strength of the gear.

ower Material			_			
Item	Pinion			G	iear	
Heat treatment	Carburized and	quenched	\sim	Carburized	and quenched	
Material symbol	SCM420		\sim	SCM42	0	
Item	Symbol	Unit		Pinion	Gear	
Allowable bending stres	⊧s σFlimn	MPa		480.5	480.5	
Allowable hertzian stres	ss σ"Hlim	MPa		1294.5	1294.5	
Core hardness		HV		316.0	316.0	Ī
Surface hardness		HV		800.0	800.0	Ī
Modulus of elasticity	E	MPa	20	6000.0 📃	206000.0	Ī
Poisson's ratio	ν			0.30	0.30	

Fig. 32.15 Gear strength calculation specifications

Fig. 32.16 shows the material selection screen set in Fig. 32.15. You can select the materials σ_{Flim} and σ_{Hlim} from the material, heat treatment, and hardness. You can also enter arbitrary σ_{Flim} and σ_{Hlim} in Figure 32.15. The strength of the gear is displayed as the ratio of the allowable stress of the material to the generated stress as shown in Fig. 32.17.

Result of strength calculation					
Item	Symbol	Unit	Pinion	Gear	
Bending stress	σF	MPa	443.6285	382.1526	
Bending stress ratio(Allowable/happen)	SF		1.0831	1.2574	
Hertzian stress	σH	MPa	1532	.0212	
Contact stress ratio(Allowable/happen)	SH		0.8450	0.8450	
Normal force	Fn	N	1252	.9235	- Same sumpole learn
Contact curvature radius	ρ	mm	3.4035	6.7187	With more a reasonable of the second secon
Arm length of bending moment	hFe	mm	2.0614	1.9419	6
Tooth thickness of root dengerous section	SFn	mm	2.0256	2.1182	
		^ 	Normal tooth	profile figure	

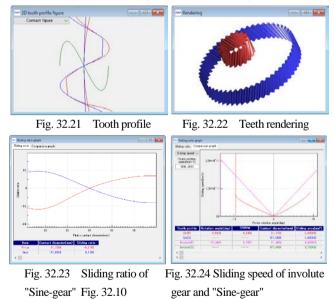

Fig. 32.17 Gear strength calculation result

32.11 Tooth profile output

The generated tooth profile can be output as a CAD file using the tooth profile output function shown in Figure 34.18. An example of CAD drawing is shown in Figure 34.19.

Output profile	Pinio	n	🔾 Gear	
DXF 2D				
Output teeth number	15	÷	1	¢
Interpolation method		Straight line	e	~
Interpolation accuracy		1.0000		μm
O DXF 3D				
Output teeth number	1	\$	1	÷
Block name	Pinion		Gear	
Color	Red	0	Red	0
⊖ IGES				
Output teeth number	1	- 	1	4
⊖ STL				
Shaft hole diameter[mm]	8.2100		9.340)
Output type		Binary		

Fig. 32.18 Tooth profile output



32.12 Internal gear pair (optional)

Figures 32.20 to 32.24 show examples of calculation of internal gear pairs.

Item	Symbol	Unit	Pinion	Gear	
Transverse module	mt	mm	2.00	100	
Number of teeth	z		17	55	
Helix angle	β	deg	25 * 0 '	0.00 "	
Helix direction			Right hand $$	Right hand	
Reference diameter	d	mm	34.0000	110.0000	
Addendum/Dedendum	hathf	mm	2.0000		
Profile shift coefficient	xt		0.0000	0.0000	
Tip clearance	cka		0.5000	0.5000	
Tip diameter	da	mm	37.0000	107.0000	
Root diameter	df	mm	30.0000	114.0000	
Circular tooth thinning for backlash	fr	mm	0.0000	0.0000	
Tip R	Ra	mm	0.0000	0.0000	
Face width	Ь	mm	20.0000	20.0000	

Fig. 32.20 Gear specifications (internal gear)

32.13 Postscript

The contact ratio of "Sine-gear" is smaller than that of involute gear, but the sliding ratio is smaller than that of involute gear, so it can be expected to reduce heat generation and improve efficiency. The efficiency of the plastic gear (m=1, $z_1=z_2=48$) experiment is improved compared to the involute gear of the same specifications. See Appendix **[E]** for details.

112